|
|
\require{AMSmath}
Re: Bewijs van dit: F1 F2 F3 Fn = Fn 2 - 1
eh, kheb er wel al eens van gehoord maar ik weet niet meer goed hoe ik daar aan moet beginnen?
Evert
2de graad ASO - donderdag 11 november 2004
Antwoord
Dag Evert. Kun je aantonen dat de regel waar is, als je voor n de waarde 1 invult? Neem dan aan dat het waar is, als n de waarde k heeft. Dus: F1 + F2 + ... + Fk = Fk+2 - 1 Dit noemen we de inductiestap. Vul nu voor n de waarde k+1 in. Dan staat er in het rechterlid: Fk+3 - 1 Ik wil aantonen, dat dit gelijk is aan het linkerlid: F1 + F2 + ... + Fk+1 Nu is (volgens de regel van Fibonacci): Fk+3 = Fk+2 + Fk+1 Voor Fk+2 mag je volgens de inductiestap invullen: F1 + F2 + ... + Fk + 1 Kun je het nu verder zelf afmaken? succes.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 11 november 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|