De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: 2 bewijzen
Bedankt. Antwoord1) Elke term van $\sum$1/(n2) is groter dan of gelijk aan de overeenkomende term van $\sum$1/(2n-1)2. Meer specifiek is elke partiële som van $\sum$1/(n2) groter dan of gelijk aan elke partiële som van $\sum$1/(2n-1)2. Maar dat betekent ook dat de limiet van de partiële sommen van $\sum$1/(n2) groter is dan of gelijk is aan de limiet van de partiële sommen van $\sum$ 1/(2n-1)2. Van de eerste weten we dat de limiet eindig is (en positief), dus is die van de tweede ook eindig (en die is ook positief).
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|