De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Opsporen van extreme waarden

ik heb een probleem met een oefening van analyse.

In het vierkant abcd is ||ab||=A. We nemen de punten eÎ[ab], fÎ[bc], gÎ[cd], hÎ[da] zodanig dat ||ae||=||bf||=||cg||=||dh||=x.

Bepaal x zodanig dat de oppervlakte van het vierkant efgh een minimum bereikt

Ik hoop dat jullie kunnen helpen. Het enige wat ik eigenlijk nodig heb is de formule waarvan ik de afgeleide moet van berekenen.

Verhoe
3de graad ASO - maandag 27 september 2004

Antwoord

Even een plaatje:
q27857img1.gif
Van het vierkant gaan 4 congruente driehoeken af.
Hoe groot is de oppervlakte van deze 4 driehoekjes?
Hoe groot is dus de oppervlakte van het kleine vierkantje uitgedrukt in a en x?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 27 september 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3