De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Van cirkel naar veelhoeken
Het is inderdaad zo dat de meeste regelmatige veelhoeken niet kunnen geconstrueerd worden. Dat kan voor de getallen van de vorm N=2k p1 p2 ... pn waarbij k een natuurlijk getal en de pi verschillende Fermat priemgetallen zijn (stelling van Gauss uit 1801). Een Fermat priegetal is van de vorm Fn= 22n+1. Dus F0=3, F1=5,... Nu is het enkel maar geweten dat Fn een priemgetal is voor n4. Het blijft echter een open probleem of dat de enige priemgetallen zijn in de Fn (het is wel bv al geweten dat voor 5n32 de Fn niet priem zijn). AntwoordMet dank aan Adriaan voor de wiskundige onderbouwing van het onmogelijke! Dat scheelt weer heel wat gepuzzel.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|