De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentievergelijking

cn=p-n
p=0,5(1+Ö5)

cn+1=cn-1-cn

De oplossing van de differentievergelijking is van de vorm

cn = a1l1n + a2l2n, met a1 en a2 willekeurige constanten. Bereken l1 en l2.

Tjibbe
Student universiteit - woensdag 18 februari 2004

Antwoord

Beste Tjibbe,

Als alleen cn+1=cn-1-cn gegeven zou zijn, dan lijkt de oplossingswijze erg op de wijze waarop de formule voor de rij van Fibonacci wordt gevonden. In het antwoord Rij van Fibonacci en Gulden Snede worden t's gevonden op soortgelijke wijze als jij de l1 en l2 moet vinden.

Maar, als cn=p-n, dan is toch zeker l1=1/p en doet l2 er niet toe??

Succes ermee.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 18 februari 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3