De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Complexe getallen

geef een oplossing voor de vergelijking z^e=z0 en e^z=z0

nielsm
Leerling bovenbouw havo-vwo - maandag 26 januari 2004

Antwoord

dag Niels,
Beide vergelijkingen kun je aanpakken door de (natuurlijke) logaritme te nemen van beide leden van de vergelijking.
De eerste vergelijking wordt dan:
ln(z^e) = ln(z0)
e·ln(z) = ln(z0)
ln(z) = ln(z0)/e
z = e^(ln(z0)/e)

Hier valt nog wel een en ander aan te nuanceren, bijvoorbeeld kun je onderscheid maken tussen (positieve en negatieve) reële waarden van z0, en complexe.
De tweede vergelijking laat ik aan jezelf over.
succes,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 26 januari 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3