De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vraag oefening met gebruik van afgeleiden

Gegeven: f(x)=x2.e-x2 op ]0,2[. Ze vragen het maximum en minimum over dit interval te bepalen. Maar nadat ik f'(x) bepaal, weet ik niet hoe ik de nulpunten moet vinden...

Hartelijk bedankt voor het helpen van mijn problemen

Yvonne
Student Hoger Onderwijs België - dinsdag 13 januari 2004

Antwoord

Hoi,

De afgeleide:
f'(x)=
[x2]'.e-x2+x2.[e-x2]'=
2x.e-x2+x2.e-x2.[-x2]'=
2x.e-x2+x2.e-x2(-2x)=
2x.(1-x2).e-x2

Met die e-x2 kan je gerust slapen, die wordt nooit 0 en zeker niet op ]0,2[. De nulpunten van f'(x) vinden we dus waar 2x.(1-x2)=0. Binnen ]0,2[ is dat in x=1. Nu kan je zeker verder met het tekenverloop van f'(x).

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 13 januari 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3