De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Extrema bepalen onder nevenvoorwaarde

De vraag is: bepaal de extrema van f(x,y) = 3x +4y onder nevenvoorwaarde x²+y²=1

Ik dacht: eerst x in y uitdrukken, die invullen in 3x + 4y en dan verder maar het lukt niet helemaal.

Jonas
Leerling bovenbouw havo-vwo - woensdag 29 oktober 2003

Antwoord

Het probleem is dat x2+y2=1 geen functie voorstelt, aangezien met x-waarden in het open interval ]-1,1[ meer dan een (namelijk 2) y-waarden corresponderen. Je zou gevallen kunnen onderscheiden, maar dat is eigenlijk onnodig prutswerk.

Stel eens x=cos(t) en y=sin(t) t$\in$[0,2$\pi$[. Hiermee is onmiddellijk voldaan aan de nevenvoorwaarde en blijft er nog slechts een veranderlijke, t, over.

Een andere manier is de multiplicatorenmethode van Lagrange, maar ik denk niet dat je daar al vertrouwd mee bent.

Lukt het zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 29 oktober 2003
 Re: Extrema bepalen onder nevenvoorwaarde 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3