De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limiet naar min oneindig

Hoi,

Ik heb hier een limiet lim((2x)/Ö(x^2+2x)+x

Als ik hier door de hoogste macht deel, x dus, dan kom ik netjes op 1 uit, wat ook de limiet voor +¥ is, maar voor -¥ komt er ook 1 uit, terwijl de limiet niet gedefinieerd is als x naar -¥ gaat.
Ik denk dat het komt omdat ik onder de wortel deel door Ö(x^2) wat dus eigenlijk |x| is en ik het teken ten onrechte kwijt ben.
Hoe moet ik het dan doen? En klopt de beredenering..

Erik
Student universiteit - zondag 19 oktober 2003

Antwoord

Inderdaad, x onder het wortelteken brengen vereist in dit geval een beetje voorkennis over waar de x-waarden precies heengaan. Aangezien x naar -¥ gaat, zullen vanaf een bepaald moment de x-waarden allemaal negatief zijn en dat wordt dan inderdaad een -Ö(x2). De teller is dan constant en de noemer gaat naar nul, genoeg om de divergentie te besluiten.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 oktober 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3