WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Limiet naar min oneindig

Hoi,

Ik heb hier een limiet lim((2x)/Ö(x^2+2x)+x

Als ik hier door de hoogste macht deel, x dus, dan kom ik netjes op 1 uit, wat ook de limiet voor +¥ is, maar voor -¥ komt er ook 1 uit, terwijl de limiet niet gedefinieerd is als x naar -¥ gaat.
Ik denk dat het komt omdat ik onder de wortel deel door Ö(x^2) wat dus eigenlijk |x| is en ik het teken ten onrechte kwijt ben.
Hoe moet ik het dan doen? En klopt de beredenering..

Erik
19-10-2003

Antwoord

Inderdaad, x onder het wortelteken brengen vereist in dit geval een beetje voorkennis over waar de x-waarden precies heengaan. Aangezien x naar -¥ gaat, zullen vanaf een bepaald moment de x-waarden allemaal negatief zijn en dat wordt dan inderdaad een -Ö(x2). De teller is dan constant en de noemer gaat naar nul, genoeg om de divergentie te besluiten.

cl
19-10-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#15269 - Limieten - Student universiteit