Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Limiet naar min oneindig

Hoi,

Ik heb hier een limiet lim((2x)/Ö(x^2+2x)+x

Als ik hier door de hoogste macht deel, x dus, dan kom ik netjes op 1 uit, wat ook de limiet voor +¥ is, maar voor -¥ komt er ook 1 uit, terwijl de limiet niet gedefinieerd is als x naar -¥ gaat.
Ik denk dat het komt omdat ik onder de wortel deel door Ö(x^2) wat dus eigenlijk |x| is en ik het teken ten onrechte kwijt ben.
Hoe moet ik het dan doen? En klopt de beredenering..

Erik
Student universiteit - zondag 19 oktober 2003

Antwoord

Inderdaad, x onder het wortelteken brengen vereist in dit geval een beetje voorkennis over waar de x-waarden precies heengaan. Aangezien x naar -¥ gaat, zullen vanaf een bepaald moment de x-waarden allemaal negatief zijn en dat wordt dan inderdaad een -Ö(x2). De teller is dan constant en de noemer gaat naar nul, genoeg om de divergentie te besluiten.

cl
zondag 19 oktober 2003

©2001-2024 WisFaq