\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Stationaire punten en Multiplicatorenmethode

 Dit is een reactie op vraag 40971 
Hallo,

Ik ben vergeten erbij te vermelden, hoe ver ik ben gekomen met de opgaves. Niet heel ver.

grad(f) = Df = 0
Dit geldt voor x = 1 (x-1 =0 - x = 0)
Dit geldt voor x2+y2-2x = 0

Verder dan dit ben ik niet gekomen.
Ik begrijp niet waarom je 2 stelsel van vergelijkingen krijgt als je grad(f)=0 oplost.


Bedankt,
Groeten, Peter

Peter
Student hbo - donderdag 20 oktober 2005

Antwoord

Beste Peter,

Wat jij begonnen bent is de nulpunten van de functie te bepalen, die zoeken we niet! Je moet niet de oospronkelijke vergelijking gelijkstellen aan 0, maar de gradiënt. Overigens wel opletten: grad(f) = Ñf met Ñ de 'nabla'-operator, en dus niet de delta!

De gradiënt geeft een vector met als eerste component de partiële afgeleide naar x en als tweede component die naar y. Gelijkstellen aan de nulvector geeft dan het stelsel, vermits uit (f/x,f/y) = (0,0) het stelsel volgt:

{ f/x = 0
{ f/y = 0

Bepaal dus eerst de partiële afgeleiden, stel ze gelijk aan 0, zet ze in een stelsel en los op naar (x,y) voor alle stationaire punten.

mvg,
Tom


donderdag 20 oktober 2005

 Re: Re: Stationaire punten en Multiplicatorenmethode 

©2001-2024 WisFaq