Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 61528 

Re: Re: Maximale omtrek van een rechthoek in een cirkel

Als ik dit verder uitwerk: 4 - 2x/√(r2 - x2)= 0 $\to$
{2x/√(r2 - x2)}=4 $\to$ x=2sqr(r2 - x2). Tot slot de x waarde substitueren in de omtrekformule en dat is het?

Johan
Student hbo - zondag 24 januari 2010

Antwoord

Een oplossing voor 'x' waar zelf dan weer 'x' in zit is geen oplossing!

$
\eqalign{
& 4 - {{2x} \over {\sqrt {r^2 - x^2 } }} = 0 \cr
& {{2x} \over {\sqrt {r^2 - x^2 } }} = 4 \cr
& 2x = 4\sqrt {r^2 - x^2 } \cr
& 4x^2 = 16\left( {r^2 - x^2 } \right) \cr
& x^2 = 4r^2 - 4x^2 \cr
& 5x^2 = 4r^2 \cr
& x^2 = {4 \over 5}r^2 \cr
& x = {2 \over 5}\sqrt 5 \cdot r \cr}
$

Zoiets...?

Als je nu zeker weet dat de grafiek van f van stijgen overgaat in dalen in dat punt heb je hier te maken met een maximum.

WvR
zondag 24 januari 2010

©2001-2024 WisFaq