Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 38502 

Re: Maximale omtrek van een rechthoek in een cirkel

Het lukt niet helemaal! Eerst de 1e afgeleide; dat gaat nog goed: f'(x)= 4-2x(r2 - x2) en daarna stellen we f'(x)=0, om mogelijke extremen op te sporen,
4-2x(r2-x2)=0 ® 2-x(r2-x2)=0 ® -x3-r2x + 2 =0 ®
x(r2 - x2)=2 Hieruit concludeer ik, dat x=2 en x = +/- sqr r2-2. Ik heb nu het idee in de fout gegaan te zijn, want ik weet met deze antwoorden geen raad in de 2e afgeleide. Wie weet mij raad te verschaffen. Bij voorbaat heel veel dank.

Johan
Student hbo - zaterdag 23 januari 2010

Antwoord

Ik denk dat de afgeleide van 4x+2√(r2+x2) gelijk is aan:

$
\large f'(x) = 4 - {{2x} \over {\sqrt {r2 - x2 } }}
$

...en f'(x)=0 laat zich netjes oplossen.

Wat wil je met de tweede afgeleide gaan doen?

WvR
zaterdag 23 januari 2010

 Re: Re: Maximale omtrek van een rechthoek in een cirkel 

©2001-2024 WisFaq