Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Logaritmische vergelijking

log(2)/log(x)+log(16)/log(2x)=11/6
log(2)/log(x)+log(16)/log(2)+log(x)=11/6
stel log(x)=p
log(2)/p+log(16)/(log(2)+p)=11/6
1/p(log(2)+log(16)/(log(2)/p)+1=11/6 ???
Kan iemand mij uit de nood helpen ?
Alvast bedankt. vriendelijk groet.

oresti
3de graad ASO - zaterdag 12 april 2008

Antwoord

Beste Orestis,

Vertek van je voorlaatste regel: log(2)/p+log(16)/(log(2)+p) = 11/6.
Zet het linkerlid op één breuk en vermenigvuldig dan beide leden met de noemer hiervan. Werk uit en je herkent een kwadratische vergelijking in p.

mvg,
Tom

td
zaterdag 12 april 2008

 Re: Logaritmische vergelijking 

©2001-2024 WisFaq