Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 43964 

Re: Re: Rechte en vlak

Ik heb nu dus gedaan:

Herschrijf het vlak in parametervorm:
a Û x=r
y=s
z=3-4r+2s

We kunnen hieruit afleiden dat V (1;0;-4) en U (0;1;2) een stel richtingsvectoren zijn van het vlak. Punt van het vlak is dan bv (0;0;3).

Stel richtingsvectoren van k?

x=0r

2y=3+0r
y= (3/2) + 0r

2z=1+5r
z=(1/2) +(5/2)r

Richtingsgetallen van k (0;0;(5/2))

Vergelijking rechte l:
l Û x=0+0r
y=0+r
z=3+2r

Scalair product met richting van k moet nul zijn

0 = ((5/2) * (3+2r))
0= 15/2 + 5r
-3/2 = r

In orde zo, of niet???

Alvast bedankt!!!

Elke
3de graad ASO - zondag 5 maart 2006

Antwoord

Beste Elke,

Van het vlak is nu alles in orde, maar je richtingsgetallen van k zijn nog altijd niet juist. Ik zie niet hoe je opeens aan die nullen komt, die coëfficiënten zijn niet 0.

q44011img1.gif

Een stel richtingsgetallen van k is dus (1,1/2,5/2).

De uiteindelijke richting van de rechte l moet een lineaire combinatie zijn van de richtingen van het vlak, zodat l in het vlak ligt. We stellen zo'n lineaire combinatie voor als richting: p(1,0,-4)+q(0,1,2)=(p,q,2q-4p).
Om p en q te bepalen neem je nu het scalair product van deze richting met de richting van k, stel dit gelijk aan 0. Eender welk koppel (p,q) dat daaraan voldoet is goed.

mvg,
Tom

td
zondag 5 maart 2006

 Re: Re: Re: Rechte en vlak 

©2001-2024 WisFaq