De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiëren van een natuurlijke logaritme

Hoe kan ik een functie $
\eqalign{f(x) = \ln \left( {\frac{{1 + x}}
{{1 - x}}} \right)}
$ differentiëren?

Melike
Student universiteit België - donderdag 22 oktober 2020

Antwoord

Je kunt bijvoorbeeld de quotiëntregel gebruiken:

$
\eqalign{
& f(x) = \ln \left( {\frac{{1 + x}}
{{1 - x}}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \left( {\frac{{1 \cdot \left( {1 - x} \right) - (1 + x) \cdot - 1}}
{{\left( {1 - x} \right)^2 }}} \right) \cr}
$

...en dan nog wat verder prutsen...

Een andere mogelijkheid is de functie te herschrijven:

$
\eqalign{
& f(x) = \ln \left( {\frac{{1 + x}}
{{1 - x}}} \right) \cr
& f(x) = \ln (1 + x) - \ln (1 - x) \cr}
$

Dat kan ook...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 22 oktober 2020
 Re: Differentiëren van een natuurlijke logaritme 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3