De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Complexe getallenAls f(z)=z2 is het reële deel u(x,y)=x2-y2 en het imaginaire deel v(x,y)=2xy dat begrijp ik maar als f(z)= (abs z)2 met abs is de absolute waarde van z dan is het reële deel van f u(x,y)=x2+y2 dat snap ik maar waarom is het imaginaire deel v(x,y)=0? Want als z = x+jy dan is (abs z) = (abs x+jy)2 = x2 +y2+2xyj waarom is v(x,y) dan niet gelijk aan 2xy? AntwoordHallo Arne,
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|