Printen \require{AMSmath}

Re: Re: Chinese reststelling

 Dit is een reactie op vraag 98414 
Het eigenaardige is het volgende:
(Z/13Z)*=Z/12Z=Z/4Z*Z/3Z=Z/2Z*Z/2Z*Z/3Z
Ik tel hiermee 6 elementen met orde 6. Klopt niet: het zijn er 2.

(Z/72Z)*=Z/24Z=Z/4Z*Z/6Z=Z/2Z*Z/2Z*Z/2Z*Z/3Z
Ik tel hiermee 14 elementen met orde 6. Dit lijkt correct.

Vanwaar dit verschil?

Leerling onderbouw vmbo-havo-vwo - zaterdag 28 december 2024

Antwoord

Er is geen verschil, ze zijn beide niet correct.

Je maakt dezelfde fout als in je beginvraag. In je vorige vraag heb je correct geconcludeerd dat $\mathbb{Z}/4\mathbb{Z}$ niet isomorf is met $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
Waarom doe je dan toch alsof ze wel isomorf zijn?

Bij $\mathbb{Z}/12\mathbb{Z} = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ moet je stoppen. Dan vind je daar twee elementen van orde $6$, namelijk $(2,1)$ en $2,2)$.

Idem voor $\mathbb{Z}/24\mathbb{Z}$; daar staan twee fouten: de groep is niet isomorf met $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ (want $\mathrm{ggd}(4,6)=2$), en je doet daar de vorige fout nog even overheen.
Ook hier: stoppen bij $\mathbb{Z}/24\mathbb{Z} = \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, daar krijg je $(4,1)$ en $(4,2)$ als elementen van orde $6$ (die komen overeen met $4$ en $20$ in $\mathbb{Z}/24\mathbb{Z}$ zelf.

©2004-2025 WisFaq