Ik loop echt heel erg vast bij twee opgaven. Zelfs met antwoordenboek kom ik er niet uit.
Bij de eerste vraag moet ik de hoek van driehoek OAM uitdrukken in t en laten zien dat de formule van y(t) juist is. Ze beweren dus dat driehoek OAM gelijkbenig is, maar M lijkt voor mij iets te ver naar beneden? Ze geven als antwoord omdat driehoek OAM gelijkbenig is dat hoek MOA = hoek MAO = 1/2$\pi$ - t? Ik weet niet hoe ze ineens hierop komen. Doordat ik deze stappen al niet snap kom ik ook niet uit bij de volgende stappen in het antwoordenboek.
Mijn tweede vraag gaat over een bewegingsvergelijking op te stellen van T. Om vector QP te berekenen wordt vector p - vector q gedaan dat is 2cos(t) / sin (t) 1-cos(2t)? Maar waarom is vector p gelijk aan yp(t) en vector q gelijk aan xp(t). Het rekenen is eigenlijk niet het probleem. Maar ik weet niet welke stappen ik moet zetten en hoe ze op die stappen komen om uiteindelijk tot het goede antwoord te komen? Ik hoop dat iemand misschien mij hier op weg kan helpen?
Cindy
Leerling bovenbouw havo-vwo - woensdag 7 maart 2018
Antwoord
De benen $MO$ en $MA$ zijn beide gelijk aan $1$, vandaar gelijkbenig. Dus zijn de hoeken $\angle MOA$ en $\angle MAO$ gelijk. Ten slotte: $\angle MOA$ en de hoek $t$ zijn samen een rechte hoek.
Iets beter lezen: er staat niet dat $p$ gelijk is aan $y_p(t)$; dat kan ook niet: $p$ is een vector en $y_p(t)$ is een getal. Er geldt $$ p=\binom{\displaystyle\frac{2\cos t}{\sin t}}{1-\cos 2t} $$en $$ q=\binom02 $$Als je die van elkaar aftrekt krijgt je $$ \binom{\displaystyle\frac{2\cos t}{\sin t}}{-1-\cos 2t} $$