De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Omwentelen van een functie

Ik heb een vraag omtrent het omwentelen van een functie om bijvoorbeeld x = -1. Bij het 'normaal' omwentelen om bijvoorbeeld x = 0, kan dit gedaan worden met bijvoorbeeld de cilindermethode of de schijvenmethode. Als je een functie f(x) om de x-as wentelt, gebruik je de formule V = pi * $\smallint $ ((g(x)^2 - (f(x))^2)dx.

Als je een functie rondom x = -1 wil wentelen, welke formule gebruik je hiervoor ?

Plinna
Student universiteit - woensdag 7 december 2022

Antwoord

Ik vermoed dat je de horizontale lijn met vergelijking $y=-1$ bedoelt; de $x$-as wordt immers gegeven door $y=0$.

De schijvenmethode werkt nog prima: je hebt nu schijven met $|f(x)-(-1)|$ als straal.
Je moet dus
$$\pi\int_a^b \bigl(f(x)+1\bigr)^2\,\mathrm{d}x
$$berekenen.

(Waarom staat er nog een functie $g$ in je integraal als je alleen $f$ om de $x$-as draait?)

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 8 december 2022



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3