De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De som van een discrete normaalverdeling

De integraal van f(x) met x lopend van - $\infty $ naar + $\infty $ , waarbij f(x) de dichtheidsfunctie is behorende bij een normaalverdeelde variabele X met gemiddelde $\mu $ en standaard deviatie $\sigma $ is gelijk aan 1. Maar als ik nu een discrete variabele K neem met K = ..., -2, -1, 0, +1, +2, ... die een kansverdeling P(K=k) heeft, die exact gelijk is aan de de formule voor de normaalverdeling waarbij i.p.v. x nu k geschreven wordt, dan lijkt het erop dat de som van P(K=k) met k lopend van - $\infty $ naar + $\infty $ ook gelijk is aan 1.

Hoe kan dit?

Ad van
Docent - zondag 29 mei 2022

Antwoord

Helaas, Maple is het er niet mee eens:

q97027img1.gif

Het verschil tussen de benaderingen is klein, maar groot genoeg.
De som is ook te schrijven als $\theta_3(0,e^{-\frac12})$, zie Wikipedia: Theta function.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 29 mei 2022



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3