De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Vraag over omkering richting eigenvector bij een 2x2 matrixDe vraag is het vinden van een orthogonale matrix Q en een diagonaalmatrix D zulks dat QtransposeAQ=D voor de matrixA= 4 1Bij de uitwerking van de $\lambda $ =3, in het bijzonder A-3I krijg ik bij het schoonvegen van de bovenstaande matrix, het volgende: x2=t vrije variabele en x1=-x2= -t. En dus de eigenvector (-1, 1) Het boek zegt echter (1, -1) AntwoordElk veelvoud (behalve de nulvector) van een eigenvector is weer een eigenvector. Bij $\lambda=3$ hoort een hele lijn van eigenvectoren: $\{(t,-t):t\in\mathbb{R}, t\neq0\}$ en daar zitten $(1,-1)$ en $(-1,1)$ beide in.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|