De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Het getal e

 Dit is een reactie op vraag 90769 
Maar is de afgeleide van het exponent 2x2 niet 4x? Als ik dat maal 2 doe kom ik toch uit op 8x niet? Of doe ik het fout...

Melike
Student universiteit België - vrijdag 23 oktober 2020

Antwoord

Ik denk dat je vergist. Je was de productregel vergeten. Je mist dan een term. Als ik jouw methode volg dan kom ik uit op:

$
\eqalign{
& f(x) = \frac{{(4x + 2)e^{2x^2 } }}
{x} \cr
& f(x) = \frac{{4xe^{2x^2 } + 2e^{2x^2 } }}
{x} \cr
& f'(x) = \frac{{\left( {16x^2 e^{2x^2 } + 8xe^{2x^2 } + 4e^{2x^2 } } \right) \cdot x - \left( {4xe^{2x^2 } + 2e^{2x^2 } } \right) \cdot 1}}
{{x^2 }} \cr}
$

...en dan komt het helemaal goed. Kijk maar 's goed!

Even apart

Productregel!

$
\eqalign{
& g(x) = 4xe^{2x^2 } + 2e^{2x^2 } \cr
& g'(x) = 4 \cdot e^{2x^2 } + 4x \cdot e^{2x^2 } \cdot 4x + 2e^{2x^2 } \cdot 4x \cr
& g'(x) = 16x^2 + 8xe^{2x^2 } + 4e^{2x^2 } \cr}
$

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 23 oktober 2020



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3