De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Regels voor logaritmische vergelijkingen

Welke regel(s) is (zijn) van toepassing voor het oplossen van logaritmische vergelijkingen met meer dan één onbekende?

Adriaa
Ouder - dinsdag 12 februari 2019

Antwoord

De rekenregels zijn niet anders dan bij vergelijkingen met één onbekende. 't Is handig om een voorbeeld te geven van het soort vergelijkingen dat je op wilt lossen.Naschrift

Voorbeeld:

$
\eqalign{
& {}^{\frac{1}
{3}}\log (N) = 0,63t - 1,92 \cr
& N = \left( {\frac{1}
{3}} \right)^{0,63t - 1,92} \cr
& N = \left( {\frac{1}
{3}} \right)^{0,63t} \cdot \left( {\frac{1}
{3}} \right)^{ - 1,92} \cr
& N = \left( {\left( {\frac{1}
{3}} \right)^{0,63} } \right)^t \cdot \left( {\frac{1}
{3}} \right)^{ - 1,92} \cr
& N = 0,50^t \cdot 8,24 \cr
& N = 8,24 \cdot 0,50^t \cr
& b \approx 8,24 \cr
& g \approx 0,50 \cr}
$

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 12 februari 2019
 Re: Regels voor logaritmische vergelijkingen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb