De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Dimensie antisymmetrische matrix

Ik vroeg mij af wat de dimensie is van de deelruimte van alle antisymmetrische (3x3) matrices. En hoe kan je de dimensie bepalen van een (nxn) antisymmetrische matrix?

Paulin
Student universiteit België - maandag 4 juni 2018

Antwoord

Beste Pauline,

Een antisymmetrische matrix is een matrix die voldoet aan $A^T = -A$ en heeft dus nullen op de (hoofd)diagonaal en elementen op gespiegelde posities t.o.v. deze diagonaal moeten tegengesteld zijn.

Voor een $3 \times 3$-matrix is de algemene vorm dus:
$$\begin{pmatrix}0&a_{12}&a_{13}\\-a_{12}&0&a_{23}\\-a_{13}&-a_{23}&0\end{pmatrix}$$Helpt dat om de dimensie te bepalen?

Probeer het vervolgens zelf te veralgemenen naar het geval $n\times n$.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 4 juni 2018
 Re: Dimensie antisymmetrische matrix  



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3