Loading jsMath...
 

De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Variantie gamma-verdeling benaderend normaal verdeeld

Hallo, ik ben al eventjes aan het zoeken op de volgende vraag: we hebben een toevallige veranderlijke Xk die gamma verdeeld is met parameterse ak > 1, b > 0 en k loopt van 0 tot n. Voor grote n is de toevallig veranderlijke \sumXk, met k van 1 tot n
benaderend normaal verdeeld met variantie b\sum(ak) voor k van 1 tot n?

Ik begrijp niet goed waarom de vierkantswortel wegvalt, deze verkrijg ik wanneer ik de gamma-verdeling met variantie a·b2 omvoor naar een normale verdeling, dit wordt dan b·√a

Emma
Student universiteit België - dinsdag 25 juli 2017

Antwoord

Het lijkt of je `variantie' en standaarddeviatie' door elkaar haalt. De gebruikelijke formulering van `normaal verdeeld' is met behulp van verwachting en variantie. De som van je X_ks is normaal verdeeld met verwachting b\sum_{k=1}^na_k en variantie b^2\sum_{k=1}^na_k (let op de b^2 in de variantie).
Je hebt de standaarddeviatie nodig om de variabele om te vormen tot een standaard-normaal verdeelde grootheid; en de standaarddeviatie si de wortel uit de variantie en dat wordt b\sqrt{\sum_{k=1}^na_k}.
Dus: in je eerste alinea hoort geen wortel, maar wel een b^2. En in de tweede alinea hoort wel een wortel, en dus een b.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 28 juli 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2025 WisFaq - versie 3

eXTReMe Tracker - Free Website Statistics