De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Algebraische weg om formule van buigraaklijn te bepalen

Stel langs algebraïsche weg de formule op van de buigraaklijn k van de grafiek van f(x) = 1/3x3 - 3x2 + 6x + 4

Eerst neem ik de afgeleide, daarna neem ik de tweede afgeleide. Dit doe ik omdat het gaat om een extreme waarde van de afgeleide. Ik stel de tweede afgeleide gelijk aan 0 en krijg het volgende: x = 3. Dit is voor mij nog goed te volgen. Maar hoe moet ik vanaf hier verder?

Volgens het uitwerkingenboek is het antwoord K: y = -3x + 13.

Isabel
Leerling bovenbouw havo-vwo - maandag 19 juni 2017

Antwoord

De raaklijn wordt nu gegeven door $y=f(3)+f'(3)(x-3)$, als je dat uitwerkt kom je wel op dat antwoord.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 19 juni 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3