WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Algebraische weg om formule van buigraaklijn te bepalen

Stel langs algebraïsche weg de formule op van de buigraaklijn k van de grafiek van f(x) = 1/3x3 - 3x2 + 6x + 4

Eerst neem ik de afgeleide, daarna neem ik de tweede afgeleide. Dit doe ik omdat het gaat om een extreme waarde van de afgeleide. Ik stel de tweede afgeleide gelijk aan 0 en krijg het volgende: x = 3. Dit is voor mij nog goed te volgen. Maar hoe moet ik vanaf hier verder?

Volgens het uitwerkingenboek is het antwoord K: y = -3x + 13.

Isabel
19-6-2017

Antwoord

De raaklijn wordt nu gegeven door $y=f(3)+f'(3)(x-3)$, als je dat uitwerkt kom je wel op dat antwoord.

kphart
19-6-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84662 - Differentiaalvergelijking - Leerling bovenbouw havo-vwo