De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Deelbaarheid

Hoi,

Ik heb problemen bij het oplossen van de onderstaande 2 oefeningen:

Geg: A(x)=(xn+1-1)·(xn-1)
B(x)=x3-x2-x+1
T.B: Voor elke n een element van de natuurlijke getallen zonder 0 is B(x) een deler van A(x)

Opl:
Ik ben begonnen met Bx) te ontbinden: B(x)=(x-1)(x-1)(x+1)
Moet A(x) ook verder ontbonden worden om daarna op een eigenschap als het verschil van 2 gelijknamige machten is altijd deelbaar door het verschil van de grondtallen te steunen? Hoe dan?

Geg: B(x)|A(x)
A(x)=ax3+bx2+cx+d
B(x)=x2+k
T.B: a·d=b·c

Opl: ?

Leentj
Student Hoger Onderwijs België - zaterdag 23 mei 2015

Antwoord

Constateer dat elke factor van A(x) het nulpunt x = 1 heeft en dus is elke factor deelbaar door x-1
Constateer daarna dat er steeds één factor het nulpunt x = -1 heeft (afhankelijk van n oneven of even) zodat er een factor deelbaar is door x+1

Begin met A(x) = (px+q)((x2+k), werk het uit en vergelijk de coëfficiënten links en rechts.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 23 mei 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3