De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Deelgroepen van cyclische groepen

Hoe kan je aantonen dat elke deelgroep van een cyclische groep zelf cyclisch is? Ik denk dt het iets te maken heeft met het feit dat elke cyclische groep isomorf is met Z,+ of Zn,+ en dat de deelgroepen van Z,+ en Zn,+ kunnen geschreven worden als dZ(n), en dit zijn op zich dan cyclische groepen...(nl voortgebreacht door het element d). Maar helemaal verklaren lukt het me niet...

Jolien
Student universiteit België - donderdag 14 november 2013

Antwoord

Ik zou proberen een voortbrenger voor die ondergroep, $H$, te vinden. Stel $d$ is een voortbrenger van de grote groep. Dan is er een kleinste $n\ge1$ zó dat $d^n\in H$ (we gaan er van uit dat $H$ niet uit alleen het neutrale element bestaat). Bewijs nu dat $d^n$ de ondergroep $H$ voortbrengt.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 14 november 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3