Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Deelgroepen van cyclische groepen

Hoe kan je aantonen dat elke deelgroep van een cyclische groep zelf cyclisch is? Ik denk dt het iets te maken heeft met het feit dat elke cyclische groep isomorf is met Z,+ of Zn,+ en dat de deelgroepen van Z,+ en Zn,+ kunnen geschreven worden als dZ(n), en dit zijn op zich dan cyclische groepen...(nl voortgebreacht door het element d). Maar helemaal verklaren lukt het me niet...

Jolien
Student universiteit België - donderdag 14 november 2013

Antwoord

Ik zou proberen een voortbrenger voor die ondergroep, $H$, te vinden. Stel $d$ is een voortbrenger van de grote groep. Dan is er een kleinste $n\ge1$ zó dat $d^n\in H$ (we gaan er van uit dat $H$ niet uit alleen het neutrale element bestaat). Bewijs nu dat $d^n$ de ondergroep $H$ voortbrengt.

kphart
donderdag 14 november 2013

©2001-2024 WisFaq