De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs

Hey,

Ik heb een vraagje: f is een continu, strikt dalende functie op +.
Ik moet g(x)=1/xò1/x0f(t)dt,
en dan moet ik bewijzen dat f(x)g(x) voor alle x Î +0.

Heeft iemand een idee hoe ik hieraan kan beginnen?

Alvst bedankt,

Jeroen
3de graad ASO - dinsdag 29 januari 2008

Antwoord

Dag Jeroen,


Ben je zeker van de opgave? Volgens mij moet de integraal van 0 tot x lopen, en niet van 0 tot 1/x.

Als dat het geval is, kan je dit met intuïtie doen: g is zo gedefinieerd dat g(x) het gemiddelde geeft van de functie f over het interval [0,x]. Vermits f een dalende functie is, zal het gemiddelde van f over [0,x] groter zijn dan de waarde van f in het punt x.

Of kijk op een figuur: xf(x) is de oppervlakte van een rechthoek met hoogte f(x) en breedte x. Interpreteer dan ook xg(x) (=de integraal uit de opgave) als een oppervlakte, en zie dat deze laatste groter is dan de eerste, waaruit het te bewijzen volgt.

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 1 februari 2008



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3