De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Bewijs integraal van oneven functie is nul

 Dit is een reactie op vraag 53895 
Bedankt voor uw antwoord!!
Ik begrijp het principe wat u uitlegt. En zie dat het dus nul moet zijn. Maar is er een manier om dat algebraisch uit te werken via een techniek van het berekenen vd integraal? Want ik moet dat namelijk zo uitwerken was de bedoeling dacht ik. Ik dacht aan substitutie ofzo, maar ik zie nog altijd niet hoe ik daar nu juist aan kan beginnen?

vicky
Student universiteit België - dinsdag 15 januari 2008

Antwoord

dag Vicky,

Als je een formeel bewijs zoekt, kun je wellicht gebruik maken van de eigenschap dat de afgeleide van een even functie juist oneven is, en de afgeleide van een oneven functie is even.
Dit is te bewijzen met de kettingregel.
Dat betekent dus: F(-a) = F(a), en daarmee is het bewijs (bijna) geleverd, op de manier waarop je zelf al begonnen was.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 15 januari 2008
 Re: Re: Bewijs integraal van oneven functie is nul  



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3