De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoe word ik de differentietechniek meester

In mijn boek zijn word de techniek gepresenteerd dat je met 1 algemene functie de primitieve van alle differentiaal vergelijkingen kan verkrijgen, maar mij lukt dat niet. De algemene oplossing is Y(t)=A·ect en de diferentiaalvergelijking is dy/dt=c·y

Nu probeer ik om 2 sommen op te lossen maar ik krijg dat niet voor elkaar dit zijn de sommen

dy/dt=4·y met het gegeven dat y(1)=e2

dy/dt=1.5·y met het gegeven dat y(3)=50

Kunnen deze sommen heel goed en handig worden opgelost met de algemene formule die helemaal bovenaan staat Y(t)=A·ect of is er een handigere methode, ik hoop snel antwoord te krijgen alvast bedankt.

Gijs

Gijs
Leerling bovenbouw havo-vwo - vrijdag 28 januari 2005

Antwoord

Y(t)=a·ect dan Y'(t)=a·cect dus Y'=c·Y

Wanneer je dat nu weet kun je ook wel andersom redeneren:
Y'=4·Y moet dus een oplossing hebben van de vorm Y(t) = a·e4t
Nu gebruik je Y(1)=e2 om die a te berekenen. Ik denk dat daar 1/e2 uitkomt.

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 29 januari 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3