De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Re: Goniometrische integraal

 Dit is een reactie op vraag 92097 
Hallo Klaas-Pieter,
Is er in punt 1 geen kwadraat vergeten in het tweede lid.

Die factor 4 klopt dus als ontbrekend.
De op te lossen integralen met uw (prachtig voorstel) leiden tot=
I= cosec2(x)+1/sin2(x) +2/(3sin^3(x)+C
I=2cosec2(x)+(2/3sin^3(x)+C
Kan dit resultaat nu juist zijn ?
Groeten
Rik

Rik Le
Iets anders - vrijdag 30 april 2021

Antwoord

Het kwadraat ontbrak inderdaad, dat is verbeterd.
Controleren of een primitieve klopt kan natuurlijk altijd door het resultaat te differentiŽren.
In dit geval krijg ik achtereenvolgens
1. $-\operatorname{cotan} x$ (standaardprimitieve)
2. $-\frac23\operatorname{cotan}^3x$ (substitutie $u=\operatorname{cotan} x$)
3. $-\frac23\sin^{-3}x$ (substitutie $u=\sin x$)
Dat zie ik jouw antwoord niet terug.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 30 april 2021



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3