De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Herhaald partieel integreren

 Dit is een reactie op vraag 59623 
Hoi Tom!

Bedankt voor je antwoord. Ik heb het geprobeerd, maar kom nog steeds op het foute antwoord uit. Wat ik namelijk heb gedaan is het volgende:

Dxln2(x)dx = [(1/2)x2ln2(x)]-ò(1/2)x2·(1/(x2))dx=[(1/2)x2ln2(x)]-ò(1/2)dx=(1/2)e2ln2(e)-(1/2)·12·ln2(1)-(1/2)e+(1/2)·1+c=(1/2)e2·12-(1/2)·02-(1/2)e+(1/2)+c=(1/2)e2-(1/2)e+(1/2)+c.

Het antwoord blijkt volgens het antwoordenboekje echter
(1/4)e2-(1/4) te zijn. Hoe kan dit?

Groeten, Lynn

Lynn
Leerling bovenbouw havo-vwo - zondag 14 juni 2009

Antwoord

Beste Lynn,

Je notatie vind ik dit keer wat onduidelijk. Na die eerste partiële integratie blijft er wel nog een ln staan, de afgeleide van ln2x is 2.ln(x)/x zodat je samen met de x2 iets van de vorm x.ln(x) krijgt: daarop moet je nog eens partiële integratie toepassen.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 14 juni 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2025 WisFaq - versie 3