Volledigheid
Hallo, Hoe dien je aan te tonen dat elke eindigdimensionale ruimte volledig is? Hiermee bedoelen we dat elke Cauchyrij in deze ruimte ook een convergente rij is... Alvast bedankt
Jolien
Student universiteit België - donderdag 25 december 2014
Antwoord
Het hangt er een beetje van af wat je voorkennis is, maar voor $\mathbb{R}^n$ gaat het als volgt: als $(x_n)_n$ een Cauchy-rij is dan is elke coordinaatrij $(x_{n,i})_n$ het ook, voor elke $i$ bestaat de limiet $\lim_n x_{n,i}$ dus, noem deze $y_i$. Vervolgens bewijs je dat $\lim_n x_n=y$. Voor het algemene geval: een eindig-dimensionale vectorruimte is isomorf met een $\mathbb{R}^n$; de norm is dan equivalent met de gewone norm op die $\mathbb{R}^n$ en daaruit volgt dat die norm ook volledig is.
kphart
vrijdag 26 december 2014
©2001-2024 WisFaq
|