\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Differentiaalvergelijking

Goedemiddag, zou er mij iemand kunnen helpen met het oplossen van een differentieaalvergelijking, want ik weet niet meer hoe dit moet.
dy/dx +2y = 3 met y(0)=1
Alvast bedankt.

simon
3de graad ASO - woensdag 23 april 2014

Antwoord

Beste hierbij 2 manieren om het op te lossen

$
\begin{array}{l}
y' + 2y = 3 \\
u = e^{\int 2 dx} = e^{2x} \\
u' = 2e^{2x} \\
e^{2x} y' + 2e^{2x} = 3e^{2x} \\
(uy)' = 3e^{2x} \\
uy = \int {3e^{2x}dx } \Rightarrow y = \frac{3}{2} + \frac{c}{{e^{2x} }} \\
y(0) = 1 \Rightarrow 1 = \frac{3}{2} + c \Rightarrow c = - \frac{1}{2} \\
manier\;2 \\
y' + 2y = 3 \\
y_h = e^{rx} \Rightarrow e^{rx} (r + 2) = 0 \Rightarrow r = - 2 \\
y_h = c_1 e^{ - 2x} \\
y_p = C \Rightarrow 2C = 3 \Rightarrow C = \frac{3}{2} \\
y = y_h + y_p = c_1 e^{ - 2x} + \frac{3}{2} \\
\end{array}
$

mvg DvL

DvL
woensdag 23 april 2014

©2001-2024 WisFaq