\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Re: Re: Re: Integreren wortelfuncties

 Dit is een reactie op vraag 56770 
Beste kn,

Hartstikke bedankt voor je antwoord, ik denk dat ik het antwoord heb:

$\int{}$x/(1+x)

stel: x=t x=t2 en dx=2t dt

$\int{}$t/(1+t2).2t dt
(vervolgens alleen teller met t vermenigvuldigd)
(niet met 2t vermenigvuldigd)

$\int{}$t2/(1+t2) .2dt

$\int{}$((t2+1)-1)/(t2+1) .2dt

= 2$\int{}$(t2+1) - 2$\int{}$1/(t2+1)

= $\int{}$2dt - $\int{}$2.(1/(1+t2))

= 2x - 2 arctanx

Ik hoop dat het zo klopt,
Dus jij hebt bij een van de eerste stappen niet met 2t vermenigvuldigd, maar eerst alleen met t, is dat een regel?

Groeten en bedankt,

Evert.

Evert
Student hbo - donderdag 16 oktober 2008

Antwoord

Evert,
Het antwoord is correct, alleen nog toevoegen +C. Wat de regel betreft:
Er geldt:$\int{}$af(x)dx=a$\int{}$f(x)dx met a een constante.

kn
vrijdag 17 oktober 2008

©2001-2024 WisFaq