Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 82514 

Re: Re: Lineaire DIFFVergelijking,constante coëfficiënt

Dag KLaas-Pieter,
In verband met een particuliere oplossing voor de DV van hierboven waarbij ik de hoeken van sin /of cos verander, dan moet ik een gelijkaardig voorstel formuleren zoals ik hierboven heb gedaan, is het niet ?
Dus DV :3sin2x+2cos3x -3x2-2x behoeft een voorstel voor
y(p)= Asin2x+Bcos2x +Csin3x+DScos3x+ex2+Fx+G waardoor het rekenwerk wat vergroot natuurlijk.
Klopt het wat ik hier heb genoteerd??
Ik ben wat begonnen met zelfstudie DV omdat ik dit zo een interessant thema vind en we deze vergelijkingen vroeger in de cursus theoretische Meteorologie vaak zijn tegengekomen.
Nog een fijne avond !
Rik
Vriendelijke groeten,
Rik

Rik Le
Iets anders - zondag 3 juli 2016

Antwoord

Beste Rik,
dat klopt; je `probeert' in feite een lineaire combinatie van de afgeleiden van het rechterlid.
Echter: dit lukt eigenlijk alleen goed als het linkerlid constante coëfficiënten heeft.
Bij een simpel geval als $y'+x\cdot y=\sin x$ moet je al terugvallen op `variatie van constanten: eerst $y'+x\cdot y=0$ oplossen, dat geeft $y_h=Ce^{-\frac12x^2}$. Daarna $y=C(x)e^{-\frac12x^2}$ invullen: $C'(x)e^{-\frac12x^2}=\sin x$ of $C'(x)=e^{\frac12x^2}\sin x$. Je loopt dan tegen lastige of zelfs, zoals hier, onmogelijke primitiveerproblemen aan. Dat is op zich niet erg want in veel gevallen gebruikt men dan numerieke integratie om die oplossingen te benaderen.

kphart
maandag 4 juli 2016

©2001-2024 WisFaq