Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Primitiveren van wortelfunctie

Ik moet de volgende integraal oplossen:
$\int{}$y2√(y2+0,25).

Ik heb de volgende substitutie gebruikt y= tan u. Dan krijg je: tan2u √(tan2+0,25)d1/cos2u

Maar hoe moet je dan verder?

reinou
Student hbo - donderdag 29 december 2011

Antwoord

Reinoud,
Jouw methode werkt wel maar geeft veel rekenwerk. Neem eerst y=1/2x, dan krijg je op een constante na de $\int{}$x2√(1+x2)dx.Deze partieel integreren. De integraal verschijnt ook in het rechterlid.

Dan krijg je:
$\int{}$x2√(1+x2)dx=1/4x(1+x2)√(1+x2)-1/4$\int{}$√(1+x2)dx.

Deze laatste integraal is gelijk aan 1/2√(1+x2)+1/2ln|x+√(1+x2).

kn
zaterdag 31 december 2011

©2001-2024 WisFaq