Hoe kan je kijken of een differentiaalvergelijking homogeen is? Want ik moet homogene vergelijkingen oplossen door een gepaste substitutie. Ik dacht dat een homogene differentiaalvergelijking homogeen is als (P(x,y)dx + Q(x,y)dy = 0) P(x,y) en Q(x,y) van dezelfde orde en dezelfde graad zijn maar waarom is de volgende vergelijking niet homogeen: (x + y + 2)dx + (2x - 2y + 1)dy =0 en deze vergelijking wel: (x3 + y3) dx - (xy2 - y3)dy =0?
Alvast bedankt! X
Katrie
Student Hoger Onderwijs België - donderdag 12 juni 2008
Antwoord
Katrien, De diff.vgl.dy/dx=f(x,y) is homogeen als f(tx,ty)=f(x,y) voor alle t¹0.Pas dit eens toe op de gegeven voorbeelden.