Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 45482 

Re: Re: Re: Differentiaalvgln van de tweede orde

Ja tot zover ben ik mee. Dit vond ik ook. Maar nu moet je die c1 toch mee integreren? Wat gebeurt daar dan mee en wat die je met het punt (2,1) waar de helling gelijk is aan 1?

Pieter
3de graad ASO - zondag 21 mei 2006

Antwoord

Beste Pieter,

Die c is een constante. Wat gebeurt er als je een constante integreert? Herinner je dat de integraal lineair is, dus een constante komt gewoon voorop. Immers, welke functie zou als afgeleide c hebben?

Voor de helling: daarmee kan je die c1 bepalen. Immers, de helling wordt gegeven door dy/dx, maar dat is y'. Vul in y' dus x = 2 in en druk uit dat die y' daar gelijk moet zijn aan 1. Dat kun je oplossen naar c1.

mvg,
Tom

td
zondag 21 mei 2006

 Re: Re: Re: Re: Differentiaalvgln van de tweede orde 

©2001-2024 WisFaq