To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...



Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Afgeleide expliciete functie

Stel dat de betrekking g(x,y)=0 expliciet kan geschreven worden als y=G(x). Waarom is dan G'(x)=-(dg(x,y)/dx)/(dg(x,y)/dy) ?

met vriendelijke groeten en dank bij voorbaat!

Bert G
Student universiteit België - zaterdag 19 juni 2004

Antwoord

Uit g(x,y) = 0 volgt gxdx + gydy = 0 Zo'n vorm wordt wel de totale differentiaal genoemd.
Hierbij bedoel ik met gx de partiële afgeleide naar x en analoog voor gy.

Hieruit haal je vrij eenvoudig dy/dx = -gx/gy

Als y echter expliciet te schrijven is als y = G(x), dan geldt ook y'= dy/dx = G'(x)
Je hebt nu voor dezelfde uitdrukking dy/dx twee verschillende vormen gevonden.
Gelijkstellen beantwoordt je vraag.

MBL
zondag 20 juni 2004

©2001-2025 WisFaq