Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bepaalde integraal

Ik heb een klein vraagje wat gaat over een bepaalde integraal van een functie, bijv. f(x), met als boven grens oneindig, en als ondergrens 0.
Mag ik dit ook schrijven als:
De limiet van de $\int{}$ f(x) dx waarvan de x naar oneindig gaat, MINUS de limiet van de $\int{}$ f(x) dx waarvan de x naar 0 gaat.

Alvast bedankt.

Leon v
Student hbo - dinsdag 6 januari 2004

Antwoord

Hoi,

Een bepaalde integraal kan je inderdaad schrijven als de som/het verschil van twee bepaalde integralen met goedgekozen integratiegrenzen. 'Half'-bepaalde integralen bestaan bij mijn weten niet... .

Je kan wel schrijven:
int(f(x):x=0..+$\infty$)=int(f(x):x=-$\infty$..+$\infty$)-int(f(x):x=-$\infty$..0)
of:
int(f(x):x=0..+$\infty$)=int(f(x):x=a..+$\infty$)-int(f(x):x=a..0) waarbij a een willekeurig reëel getal is.
Voor zover uiteraard f(x) gedefineerd is en integreerbaar over die intervallen...

Je gebruikt ook de term 'limieten' in je vraag; dat maakt het nodeloos ingewikkeld.

Groetjes,
Johan

andros
dinsdag 6 januari 2004

©2001-2024 WisFaq