To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...



Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Eigenvectoren

Stel dat x1 en x2 eigenvectoren zijn van de (nxn)-matrix A over het veld K
c1, c2 Î K/{0}. Zoek de voorwaarde opdat x=c1x1+c2x2 een eigenvector is van A.

Koen M
Student universiteit België - vrijdag 11 juli 2003

Antwoord

Nogmaals hallo Koen,

Ax1 = l1x1
Ax2 = l2x2

A(c1x1+c2x2) = c1l1x1 + c2l2x2
= m(c1x1+c2x2) (dit is de voorwaarde opdat c1x1+c2x2 een eigenvector is)
Als en alleen als m=l1=l2.
Dus de voorwaarde is dat de eigenvectoren dezelfde eigenwaarden hebben. En waarschijnlijk heb je dat in de theorie ook wel gezien: als een eigenwaarde multipliciteit meer dan 1 heeft, en er zijn twee lineair onafhankelijke eigenvectoren, dan heb je een eigenruimte, dus bv. een 'vlak' van eigenvectoren.

Christophe.

Christophe
vrijdag 11 juli 2003

©2001-2025 WisFaq