De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Affiene deelruimte

 Dit is een reactie op vraag 91261 
Def: (i) Zij D een affiene deelruimte van Rn. Dan bestaat er een unieke deelruimte W waarvoor D=v+W voor een v element van Rn. We noemen W de geassocieerde vectordeelruimte van D.
(ii) Zij D=v+W. Elke vector in D noemen we een plaatsvector van D. Elke vector in W noemen we een richtingsvector van D.

Onder deze definitie staat er als opmerking dan een affiene deelruimte D van dimensie k is uniek bepaald door 1 plaatsvector en k linear onafh. richtingsvectoren. Is het mss omdat we D kunnen voorstellen als v+a1.w1+a2.w2+...+ak.wk?

Rafik
Student universiteit België - zaterdag 2 januari 2021

Antwoord

Je laatste zin is niet de reden, maar het gevolg van die opmerking. Waar komen volgens jou die $w_1$, tot en met $w_k$ vandaan dan?

In de juiste volgorde: Gegeven $D$ bestaan $v$ en $W$. Neem een basis $\{w_1,\ldots,w_k\}$ voor $W$ (daar komen die vectoren vandaan, eerder is vastgesteld dat elke deelruimte van $\mathbb{R}^n$ een basis heeft, dat passen we nu toe). Die $k+1$ vectoren leggen $D$ nu geheel vast: elke $x\in D$ is van de vorm $v+w$ met $w\in W$, en $w$ is dan, als in je laatste zin, te schrijven als lineaire combinatie van $w_1$ tot en met $w_k$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 2 januari 2021



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3