De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Sinh(x)

Beste collega's,
Misschien dat 1 van u mij verder kan helpen.

Hoe kom ik van:
$
\sum\limits_{k = 0}^\infty {\frac{{x^{2n + 1} }}{{(2n + 1)!}}}
$
naar

$
\frac{1}{2}\sum\limits_{k = 0}^\infty {\frac{{x^k }}{{k!}}} - \frac{1}{2}\sum\limits_{k = 0}^\infty {\frac{{( - x)^k }}{{k!}}}
$

Ik bedoel met gemanipuleer, dus niet door de ene en de andere machtreeks te laten zien, en dat te laten zien dat het gelijk is aan de eerste.

mvg DvL

Dennis
Beantwoorder - maandag 23 september 2013

Antwoord

Hoi,

Ik zou beginnen met de volgende gelijkheid in te zien:

$\sum\limits_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!} = \frac{1}{2} \sum\limits_{k=0}^\infty \left(\frac{x^k}{k!} - \frac{(-x)^k}{k!}\right)$

Deze gelijkheid klopt, omdat de termen waarbij $k$ even is wegvallen, en de termen waarbij $k$ oneven is blijven staan, zodat we eigenlijk gewoon de oorspronkelijke reeks op een andere manier geschreven hebben (zonder te moeten werken met '$(2k+1)$' om aan te duiden dat we enkel de oneven exponenten willen).

En nu is het natuurlijk eenvoudig om te zien dat dit ook gelijk is aan het gewenste resultaat (gewoon de sommatie splitsen; dit mag omdat je weet dat beide reeksen die je dan bekomt ook eindig zijn).

Hopelijk was dat de manier van 'gemanipuleer' die je bedoelde :-).

Mvg

cs
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 23 september 2013
 Re: Sinh(x) 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3