De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Aantonen Formules

 Dit is een reactie op vraag 47586 
dag,
ik dank u voor de antwoorden, maar heb nog enkele vragen.

Hoe weet je dat (1/2) · ( vierkante haak ) (1 / ((k-m)ω) · sin ((k-m) ωt) - (1 / ((k+m)ω) · sin ((k+m) ωt) (vierkante haak met T boven en 0 onder )

gelijk is aan 0 ?

En bij de 2de functie kom ik aan

(1/2) · ( vierkante haak ) (1 / ((k-m)ω) · sin ((k-m) ωt) + (1 / ((k+m)ω) · sin ((k+m) ωt) ) (vierkante haak met T boven en 0 onder )


Is dit dan ook gelijk aan nul ( k niet gelijk aan m)

Mijn 2de vraag is bij k=m.
Ik ben helemaal mee met de bewerkingen maar waarom dan de uitkomst gelijk aan 1/2 T

Alvast bedankt,
Bart.

Bart
Overige TSO-BSO - dinsdag 14 november 2006

Antwoord

houdt in de eerste plaats in de gaten dat per definitie geldt dat
$\omega$º2$\pi$/T
Dus als je in het gedeelte sin((k-m)$\omega$t) de waarde 0 invult dan krijg je zowiezo NUL, en als je T invult krijg je sin((k-m).2$\pi$)
welnu, k en m $\in\mathbf{Z}$ dus k-m is -3 of -2 of -1 of 0 of 1 of 2 etc...
zodoende staat er een ·geheel aantal malen· 2$\pi$, en daar de sinus van. Dat levert te allen tijde NUL.
VAndaar dat alles tussen de vierkante haken nul is bij invullen van 0 danwel T.

De primitieve van je tweede integraal, waar je naar vraagt, klopt inderdaad.

Tot slot: wanneer je in het geval k=m de primitieve bekijkt, zie je ook hier weer een sin-term staan. En ook hier geldt weer dezelfde argumentatie:
Bij 0 invullen wordt alles binnen de vierkante haken nul;
Bij T invullen verandert t in T, en wordt de sinus van een ·geheel aantal keren· 2$\pi$ NUL.
hou je over T.
Met het '1/2'-je ervoor wordt 1/2T

groeten,

martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 14 november 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3